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ABSTRACT 9f

A collocation method is given for steady-state simulation of

multiple reactions in porous catalysts. A realistic muticmponent

diffusion model is used, which includes an allowance for pore size

distribution. Hyperbolic basis functions are introduced to repre-

sent the intraparticle profiles; ampact solutions are thus obtained

both in the presence and absence of fast reactions. Calculations

for a six-camponent catalytic reforming system show that the catalyst

performance is strongly affected by intraparticle diffusion.
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SIGNIFICAC AND EXPIANATION

Theoretical models of gas diffusion and flow in porous solids

are well developed, and are beginninq to be applied to simple

catalytic systens. Calculations of this kind permit a new level

of understanding of catalysis, which should lead to more efficient

chemical processes.

Detailed simulations of catalyst particles should be especially

useful in studies of multi-reaction processes, for which the catalyst

selectivity may be sensitive to intraparticle diffusion. In this

paper we sumnarize the relevant transport equations and give a new

collocation method for solving this kind of problem.

The simulation of a catalyst particle needs to be done effi-

ciently if it is to be included in a reactor amputation. Colloca-

tion methods based on global polynomials become inefficient in the

presence of fast reactions because of the steep reaction fronts

which then occur. Improved basis functions are introdured here

from a linearized versiur - the transport equations, thus pro-

viding cxmpact solutions ide range of reaction rates.

ji

The responsibility for the wording and views expressed in this
descriptive summary lies with MEC, and not with the authors of this
report.
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COLILOATION ANALYSIS OF rMLTICOMPONENT DIFFUSION

AND REACTIONS IN POROUS CATALYSTS

Jan P. Sdrensen and Warren E. Stewart*

INTRODUCTION

Theoretical models of gas diffusion and flow in porous solids are

well developed [23, 24, 10, 11, 17], and are beginning to be applied

to simple catalytic systems [2, 9, 15, 18, 19, 20, 38]. Calculations

of this kind permit a new level of understanding of catalysis, which

should lead to more efficient chemical processes.

Detailed simulations of catalyst particles should be especially

useful in studies of multi-reaction processes, for which the catalyst

selectivity may be sensitive to intraparticle diffusion. In this paper

we summarize the relevant transport equations and give a new

collocation method for solving this kind of problem.

*Deparwet of Chemical Engineerinq, Lnivrsity of Wisconsin-Madison,
Madison, WI 53706

Sponsored by the United States Army nder Contract No. DAAG-29-80-C-
0041.
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The simulation of a catalyst particle needs to be done

efficiently if it is to be included in a reactor computation.

Collocation methods based on global polynomials become inefficient in

the presence of fast reactions [35, 26, 7, 36] because of the steep

reaction fronts which then occur. Improved basis functions are

introduced here from a linearized version of the transport equations,

thus providing compact solutions over a wide range of reaction rates.

TRANSPORT EWATIONS

Consider the steady diffusion and reaction of a multicmponent

gaseous mixture in a porous catalyst particle. We use the following

model [24, 10, II] to describe the intraparticle molar fluxes:

N(,m) =_E(W klT) [F(r)]-71 (BO0 ) 2!P- (I

k=1

The first right-hand term arises from gaseous diffusion, the second

from viscous flow, and the third from surface diffusion. The gaseous

diffusion expression includes the leading thermal transpiration term

n alnT/3z from the dusty-gs model of Mason et al. [23]. The elementsi

of F(rk ) are obtained by setting r = rk in the expressions

no

Pii(r) = /Z(r) + Lchh/coih (2a)

h=1
h~i i =

c

P Cr) = - c/cb i A j (2b)
ij i ij

in which n is the number of gaseous species.C



Ekuation (1) includes the Knudsen diffusion equation and the

Stefan-Maxwell equation [6, 16] as asymptotes for low and high

pressures, respectively. This model has also been tested thoroughly

over the intermediate region [10, 11] commonly encountered in

industrial gs-solid processes. The summation on k in eqn (1) is a

quadrature of the flux expressions of Mason et al. [24] over the pore

size distribution. A two-point sum (n = 2) fits the available data
w

well for a variety of catalysts [10, 11]; one point suffices for

narrow pore size distributions.

Eqiuation (1) was developed for non-reacting systems, under the

assumption that the concentrations and temperatures in the pores

conform to smooth fields defined throughout the porous medium. For

simplicity we use the same model in the presence of chemical

reactions. This approach should be satisfactory if the pores are

cross-linked frequently, so that the concentration changes along

individual pore segments are small. This point is discussed in greater

detail by Jackson [17]; see also Mingle and Smith [25].

The energy flux within the particle is modelled as

nc

- k (3)

i=1

that is, as a sum of convective and conductive terms, with the Dufour

effect [6] neglected.

In the following calculations, we use the interstitial

concentrations ci and the temperature T as state variables. Ejuations

(1) and (3) are readily rewritten in these variables by insertion of

the ideal as law. The result can be expressed in the matrix form



N=-D SU(4)

The flux arra N has the elements IN, ... N ,NI, and the state

vector has elements Ic,, ... c , T). The elements of D aren.

summarized in Appendix A.

At steady state, the fluxes in the particle satisfy the mass and

energ balances

=-, R i n,. n5)

(Vi1~=RE = 0 (6)

in the smooth-field approximation. Here R is the local production

rate of species i per unit volume of the heterogeneous medium; its

evaluation for fairly general kinetics is discussed in [33].

In this work, we consider symmetric states fc i(z2 ), T(z 2) in a

catalyet slab or sphere, with boundary conditions

cI z=1= co; dci/dz = 0 i = ... (7)

T Iz=1= T0; dT/dzIZO= 0 (8)

The dimensionless coordinate z is measured from the particle center,

as a fraction of the particle half-thickness L. More general boundary

conditions are readily acccmodated.

A collocation procedure for solving eqns (4)-(8) is described in

the next four sections. After the description, three numerical

examples are given.



-5-

BASIS FUICTIONS

The collocation procedure requires a set of basis functions to

describe the concentration and temperature profiles. Global

polynomials are often used for this purpose [35, 12, 36], but many

terms are then required to get acceptable accuracy for fast reactions.

Piecewise polynomials (splines) are more flexible [26, 7, 36], but the

choice of breakpoints for these functions needs further study,

especially for multicomponent problems. The approach taken here is to

develop natural basis functions from a linearized form of the given

problem. A similar approach has been applied successfully to systems

of first-order differential equations [13].

Insertion of eqn (4) into (5) and (6), and linearization around a

reference state E , gives the matrix differential equation
~R

. .. - "

Here D( E ) is the transport coefficient matrix calculated at C from

the relations in Appendix A, R( R) is the vector of production rates

at ;, and R'(E ) is the matrix aR/aE evaluated at C from the given

kinetic model. The matrix D(E ) is non-singular, since eqns (1) and

(3) are linearly independent [31].

The solution vector E of eqns (7)-(9) is a linear combination of

the following functions:

1, cosh(z\F ) (Slab) k = 1, ... r

(10)

i, sinh(zV' k)/z (Sphere) k = 1, ... r

Hfere r is the rank of the matrix [- D(E )-  L2 R'(E ) ], and

" r are its nonzero eigenvalues. If a p-fold eigenvalue yields
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fewer than p eigenvectors, alternative functians given in eqn (11a)

or (C1b) will appear. Since in practice the rank may be uncertain, we

use its upper bound m: the maximum number of independent production

rates R permitted by the stoichiometry and local constraints of thei

reaction system [3, 16, 17, 31, 331. In the stoichiometric analysis

of (331], m is the number of non-equilibrium reactions that yield pivot

coefficients for mobile species. The m largest values of Real(V)
k

are then used to obtain m functions of the form in eqn (10).

The quantities X are generalized Thiele moduli [4] for the

corresponding eigenfunctions in eqn (10). Polynomial approximations of

the linearized solution become difficult if any of these moduli are

large; in such cases we will say that the differential equations are

"stiff".

Equation (10) is written for non-zero eigenvalues X ,.

i.e., for kinetics of full rank m. In this case, the spatial function

"I" corresponds to an equilibrium solution E of eqn (9). If any of~e

N , ... in eqn (10) are zero, then the corresponding functions 
are

replaced by z2k , obtained by expansion of the solutions in powers of

\J. This procedure provides a particular solution proportional 
to z2

whenever eqn (9) lacks an equilibrium solution; in such cases, the

function "1" is merely a solution of the related homogeneous

equation, = 0. Kinetics of rank less than m can arise from

zero-order rate expressions (which we prefer to avoid), or from other

causes such as absence of various concentrations from the reaction

rate expressions.

For non-linear problems, we extend the function set of eqn (10)

by differentiation with respect to \/X at each characteristic value

Ak' The following differential forms are convenient:
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1 ocosh( (1 ) 8 -- ) e 13~k
\ a~) osh\/T) 1c 2 exp(Z\IT) + 2 exp(-Z\f'X)Xk 2 2

s = 1, 2, ... (Slab) (11a)

( a ) s s i n h ( z \T )1  (I --(1-)sa exp zFk (1 +Z)s exp(-zFk

z X k  2z 2z

s = 1, 2, ... (Sphere) (11b)

These functions are also used to deal with clustered eigenvalues as

described below. The solutions i (z) and N iz(z) are then approximated

as combinations of basis functions selected from eqns (10) and (11),

n

T= aii j() i = 1,... na+l (12)

j=o

n

N = fi *() i = 1, . +1 (13)Siz T cjd

j=1

with adjustable coefficients a and fiJ' and with O(z)= 1. The

index n is chosen by the user. Here and below, we mark the approximate

solutions with a tilde (M. Equation (13) is included to facilitate

the treatment of eqns (5) and (6) for systems with variable D.

Por sufficiently large n, eqn (12) can approximate any continuous

symmetric function i(z 2 ) to arbitrary accuracy over the interval

[0, 1], even if all the values V k are replaced by a single constant

. . To prove this, we note that eqn (12) then reduces to a repre-

sentation of (&i - aio) (Slab] or z(E i - aio) [Sphere) by an

expansion P (1-z)exp(as) + Pn(1+-)exp(-s). Division by exp(az) leads,n

for either geometry, to a representation of a continuous function by a

polynomial P (1-z); the proof then follows directly from the
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Weierstrass approximation theorem [8]. Equation (13) has similar

approximating power for the fluxes NIz. Consequently, it ib

permissible to modify the A's for simplicity if a sufficient number

of basis functions is used.

The following ordering of the functions for selection has given

good results. let the desired number of collocation points be n; then

n+1 functions l (z) are required. We start with 0 (z) = I and a0 = 0;

then we choose the constants a ... a as the values of Real(' I) in

descending order. These values are necessarily non-negative. If n < m,

we drop the values after a , thus omitting those terms of the linearizedn

solution. On the other hand, if n > m, we insert a+, ... an according

to the recursion formula a = a m Then we rearrange and relabel the

resulting list to form an ascending sequence ji I = {a ' ... n "

Close groups of unequal a values are then compacted as follows,

to strengthen the linear independence of the basis functions. If uIy

a < 2.0j for a slab, or aj < 2.5j for a sphere, with aj_1< a, then

a and all equal or smaller a's are replaced by zeros, thus replaciAg

aathose basis functions by poJlynomials. Subsequent sequences { .h, ...

a h+k, with k the largest integer such that ah+k/Ah < (1 . 4 )k- 1, are

compacted by replacing each member with (a a k) . These
h h+1- h-ik

procedures were developed from numerical tests to provide a

well-conditioned Gram-Schmidt solution of eqn (19).

The basis functions are then obtained by rewriting eqns (10) and

(11) as follows, with multipliers exp(-aj) to ensure computable values:

i ,. ... .. . . . .. . ..
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For a = 0 in a slab or sphere,
z2SjJ = 2s(14a)

For a > 0 in a slab,J
(1-z)s j  (I+z) s j

= expjct (z-1)] + - 2 exp[-aj(z+1)] (14b)
j323

For a > 0 in a sphere,
js

5. S
(l-z) J (1+z) J

- exp[a (z-1)] exp[-a (z+1)] (14c)
j 2z j 2z j

Each integer s is taken here here as the number of prior occurrences
J

of the associated value a in the a-list.J

The selection order used here is different from that used by

Guertin et al., who gave last priority to rapidly decaying functions in

their basis selection for initial value problems. Such a rule is not

relevant for the boundary-value problems considered here, in which the

fluxes depend on the gradients and thus the steep basis functions

may be important. By giving priority to the large a's (after a0), we

bracket any unused values and obtain good accuracy with fewer

basis functions.

COLOCATION POINTS

The collocation procedure consists of adjusting eqns (12) and

(13) to satisfy eqns (7) and (8) exactly, and to satisfy eqns (4)-(6)

at a set of interior points zl, ... z . We choose these points by

analyzing the residuals of eqns (5) and (6),

2' = z -[ aI()] _ L Ri (c) i = 1, ... n +1
~ za  dz ~z c

(15)
in the series form
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= Qn (z) E d ,k(z) i = 1, ... nc+l (16)

k=0

Here the d ik are unmown coefficients, and Qn(z) is a function whose

zeros z , ... z will be the interior collocation points. We choose
n

n-1

Qn(z) = n(z)+ Z b j (z) (17)

in which the b are coefficients to be determined.J

We minimize the magnitudes of the mean residuals
01 01j S .z dz = i(1) - L R.( ) a dz

fnO 0
(18)

= dik Q (z) O(z) a dz i = n, ... nc+1Z n k=O

with respect to the coefficients b by imposing the following

orthogonality conditions on Q (z):n

J (z) 0 k(z) za dz = 0 k = 0, n-I (19)

These conditions cause Q (z) to have n distinct zeros on the interval

(0,1), as shown in Appendix B. Collocation at the zeros of Qn(z) thus

is feasible, and eliminates the first n terms of the mean residuals

as expressed in eqn (18). The coefficients b in eqn (17) are

determined by eqn (19); the values of the dik are not required.

Equations (19) are also obtainable by minimizing the mean square

of Q(z) with respect to bo, ... bn_1 . The leading term of each



residual 3i in eqn (16) is thus minimized in a least-squares sense

over the interior of the catalyst particle.

In systems with constant D, eqns (13) are exactly consistent with

eqns (12) and (4). In systems with variable D, however, flux residuals

9 is- i(g) dg/dz arise. The resulting truncation error in eqn (20) is

normally small, and could be reduced by using a second set of points

for evaluation of I{ * This question will be considered at another

time.

DISCFRE-0RDINATE EQUATIONS

It is convenient to compute the solution values directly at the

collocation points, rather than solve for the coefficients in eqns

(12) and (13). This is done by expressing the gradient and divergence

operations in the forms

d- A kj ti (Z i)  (20)

zk j=1

n

za  " k j=I

with a = 0 for slabs and a = 2 for spheres. Equation (21) has n terms,

as does eqn (13); for simplicity the needed n values of Niz are taken

at the interior points zI, ... Zn. A similar divergence operator was

used by Feng [9] for effectiveness-factor calculations with polynomial

basis functions.

Application of eqns (20) and (21) to eqns (12) and (13) gives the

linear equations

.1
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L A L ,= 1,... n+i

(22)

[ di dili

Lz az dz zkj dL Ii

(23)

S=1, ... n

4 k =1, ... n1

from which the matrices [Aj] an [E ] for the given problem are
kj kj

calculated.

Insertion of eqns (20) and (21) into eqns (4)-(6) then gives the

collocation equations

nc n+1

z(zk) - D D1 ( 9 zk) A kchj(rh)
J=1 h=1 (24)

n

Z j L %z(zj) = L2 Ri( (zk )  (25)

J=1
i= 1, ... n+1

C

k= 1, ... n

Insertion of eqn (24) into the left side of (25) gives a system of

equations for the mesh-point values &i(zk); we solve this system by

Newton's method. The symmetry of the problems considered here would

allow replacing some of eqns (25) by stoichiometric relations among

the fluxes [31]; however, the equations as shown allow a simpler

extension to non-symnetric problems.
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If equilibrium reactions or immobile species are included in the

reaction scheme, then a corresponding number of differential equations

must be replaced by local equations as in [33]. These changes do not

arise in the examples considered here.

COPUATION PROCEDURE

A reference state -R was chosen for each problem as described in

Examples 1-3 below. The maximum number of independent production

rates, m, was computed as described under eqn (10). The matrices D(E )

and.R' () were computed analytically from the expressions for the

fluxes and reaction rates, and the eigenvalues of [- D-1 (C ) L 2 R'(CR)]
- -R -R

were computed by the Q-R method. Single precision (8 digits) sufficed

up to this point.

The function Q (z) was determined from eqns (17) and (19) by a

nnmodified Gram-Schmidt algorithm. The zeroes of Qn (z) were found by a

grid search and Newton iteration. The weight matrices [Akj] and [Ekj]

were then computed from eqns (22) and (23) by IU decomposition [301

with partial pivoting. These calculations were done in double

precision (18 digits). Polynomial collocation was initiated in the

same way except that the eigenvalues were replaced by zeros.

Equations (24) and (25) were then set up in single precision and

solved by Newton's method, starting from estimates Ei(zk) based on a

one-point solution. The examples that follow were solved with a

general-purpose program, which does the calculations automatically

when the desired reaction model and conditions are presented in

digital form.



EXAMPLE 1. SECOND ORDER REACTION WITH LARGE THIELE MODULUS

As our first example we consider an isothermal, irreversible

second-order reaction in a porous catalytic slab. Solutions are

obtained by collocation with the hyperbolic basis functions, and

various alternative methods are compared.

The problem can be stated in dimensionless form as follows,

d2 c 2 c - z < 1 (26)
dz

2

c= I at z = +1 (27)

and has one independent rate of production; thus, m = 1. The problem

is non-linear and is stiff when the Thiele modulus, 0, is large; it

provides a good test of approximate solution methods. Solutions are

given here for the dimensionless boundary flux, N = dc*/dz Iz = 2 ,

at Thiele moduli of 10, 100, and 1000.

For these large values of 0, the concentration will drop almost

to zero at the center of the slab. Linearizing the reaction term of

eqn (26) at the mean concentration of 0.5, we obtain the single

eigenvalue I= - a(, 2c*2 )/pc*I0.5 = ,2. The resulting basis

functions, for j > 1, are

. = (1-z)J-lexp[(z-1)0] + (l+z) J 1 exp[-(z+l)s,] (28)J 2--2
Several of these functions are shown in Figure 1.

Table 1 shows the convergence of the approximations to the

boundary flux N with increasing nuber of collocation points. The

hyperbolic functions of eqn (28) give rapid convergence throughout.

With these functions, two-point collocation gives the boundary flux

within about I percent for Thiele moduli 0 > 10.
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C; 0 0 0

Figure 1. Basic funactions W.z of eqns (14a) and (28) for Thcuiple 1

with Thiele mo~dulus of 1000.



TANLE 1

Convergence of Solutions for Boundary Flux, N* = I

for Isothermal Second-Order Reaction in a Slab

Number of Results with hyperbolic functions Results with splines [36]
Collocation

Points = 10 = 100 = 1000 =1000

1 7.9736 91.356 969.83 627.5

2 8.C537 81.127 814.16 708.5

3 8.1505 81.689 817.65 715.8

4 8.1614 81.662 816.79 792.5

5 8.1637 81.661 816.67 800.4

6 8.1641 81.654 816.57 812.0

7 8.1642 81.652 816.53 815.*2

8 8. 1642 81.651 816.51 815.5-

9 8.1642 81.650 816.51

10 8.1642 81.650 816.50

11 8.1642 81 .650 816.50

- (8.16421)0 (81 .6496)1 (816.497)1 (816.497)#

#rmthe general solution for a single reaction in a slab (5, 27, 3].
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The exact concentration profile at 1 = 1000 is shown in Fiexre 2

along with point values computed by the present method. Good

agreement is found at each n > 1 except for the point of lowest

concentration, where the linearization of the second-order kinetics

is least realistic. Note that each set of collocation points is

positioned nicely in the reaction zone.

Villadsen and Michelsen [36] have analyzed this problem by

collocation with global and piecewise polynomials. Using global

polynomials at = 100, they obtained a boundary flux of 100.0 for

n = 8, and 83.9 for n = 12. From Table 1 we see that the hyperbolic

functions give more accurate values than these, even for n as small

as 2.

Piecewise polynomials (splines) were used by Villadsen and

Michelsen [36] to solve this problem at 0 = 1000, where global

polynomials failed. The general solution for single reaction in a slab

[5, 27, 3] was used to select the breakpoints of the piecewise

polynomials. Their best results are shown in Table 1; these were

obtained with a breakpoint at z = 0.9987 for n > 1, and another at

z = 0.991 for n > 4. Comparing the last two columns of Table 1, we see

that each hyperbolic solution (except for n = 1) approximates N more

accurately than the 2n-point solution based on splines.

The problem for 0 = 1000 may also be solved by a modified

Paterson-Cresswell method. In the original method [26], the reaction

is assumed to be so fast that the concentration in an interior region

[Oz I may be neglected, and eqn (5) need only be integrated over the

region [z,1 ]. In the modified method [36] the concentration

gradient, rather than the concentration itself, is neglected in the

region [O,z s, and the boundary condition at z = z becomes dc/dz = 05 8
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1.01III 

I*

I

0.8-

0.6- COLLOCATION SOLUTIONS

n:ln =2
n=r.3 C3OA4- n =a4 a*
.n5 o

EXACT SOLUTION
0.2-

0.98 0.99 1.00

z

Figure 2. (noentrations in a catalyst slab with isothemal seond-order
reaction at Thiele modulus of i000. 7he collocation solutions
are based on the fuctions of eqn (28), along with 0(Z) = 1.
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rather than c = 0. With polynomial collocation, some experimentation

is needed to select a suitable value of z ; however, with the

hyperbolic functions, the choice of z is not so critical.

For a chosen z we compute a solution with a modified Thiele8

modulus 0 = (1 - z )0. Let the modified boundary flux be N; then
B a 8

the boundary flux of the original problem becomes N*= N/Cl - zs ). To

obtain the boundary flux for 0 = 1000, we first try z = 0.9 which

gives 0 = 100. Then N = 81.7 (Table 1, n > 3), and N = 817.; this

is comparable to the result obtained from our global procedure. The

alternate choice z = 0.99 gives 0 = 10, whence N = 8.16 (Table 1,

n> 4), and N = 816. Both choices of z give good approximations of-- S

the exact flux N = 816.497; however, the direct solution shown in

* Table 1 is at least as quick.

EXAMPLE 2. THE WEISZ-HICKS PROBLM

As a second test of the new collocation procedure, we consider the

non-isothermal effectiveness-factor problem of Weisz and Hicks [37].

This problem is described by eqns (4)-(8) with spherical symmetry,

constant transport properties, and a first-order Arrhenius kinetic

model.

The kinetic model chosen for this example is R2 = -R I = ci*

expC-15000*(I/T - 1/500)]. Here again, m = 1. The other chosen values

areW =0, B 0 = 0D , L= 3 , k =I, AH =-00, co= 1,k 0 iJs ij ef

and T = 500 in eqns (1) and (3)-(8). These values make D a unit
0

matrix, and correspond to 0 =3, 8= 0.2, and y 30 in the notation

of Weisz and Hicks [37].

For this single-reaction problem, eqns (4)-(8) yield the steady

state relation (T - T 0)/T 0 = (I - c*)B throughaot the particle.

Euation (5) then reduces to the form 37]
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1 d (z2 dc )=2 R*(c*) (29)

z2 dz dz

with

R (c) = 0 exp I + 00 (30)
[1 +8(1-c*

This function is plotted in Figure 3 for the chosen values of $ and y.

The multiplicity criteria of Iuss [22], as well as those of

Stewart and Villadsen [32], predict a strongly ignited steady state.

Thus, the reactant concentration will span the range of Figure 3, and

the reaction rate will have a strong peak within the particle.

A linearized solution (n = m) will clearly not be adequate here;

the added basis functions of eqn (11) will be essential. The region to

the left of the peak in Figure 3 is chosen for the linearization, in

order to describe accurately the inner border of the reaction zone.
*

Linearization at c = 0 gives XI = 1336., whereas an orthogonal linear

fit of the rate function in the region of positive slope gives X =

457.8. Linearization at a point to the right of the peak (as would be

appropriate for an unignited particle) gives a negative, -al X 1 and

yields polynomial basis functions according to the selection rules

described above.

Table 2 shows the convergence of the solutions for the boundary

flux. Both hyperbolic function sets give good results for n > 3; the

set based on cR = 0 is preferred. To obtain better than 2 percent

accuracy with this set we need only 4 collocation points, whereas

with polynonials 9 points are required.

EXAMPLE 3. CATALYTIC REMOI OF C7 HYDROCARB
-------------------------- -- ----------------------------- f - -----

Krane and co-workers [21] gave a kinetic model for catalytic
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TABLE 2

Convergence of Solutions for Boundary Flux for the

Weisz-Hicks Problem with I = 3., B = 0.2 and y = 30.

* 2
Number of Collocation Solutions, N = q/3

Collocation Hyperbolic functions Polynomials

=Points, j3=\19F6\.# a 3 a = 0
i i

n i>0 i>0 alli

1 33.524 22.012 4.942

2 12.148 7.828 12.935

3 8.583 10.418 6.661

4 9.655 8.830 7.317

5 9.337 9.573 9.218

6 9.500 9.546 10.359

7 9.438 9.371 9.130

8 9.447 9.428 9.209

9 9.456 9.475 9.546

10 9.451 9.459 9.502

11 9.450 9.443 9.406

12 9.451 9.448 9.445

13 9.451 9.453 9.465

*

# Determined by linearization at c = 0.

## Determined from a least-squares linear fit of R *(c*)

over the region of positive slope in Figure 2.
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reforming of C7 hydrocarbons over platinum-alumina. Their reaction

scheme is as follows:

(s)
5 n-Heptane 2

(C) J I(N) 4 (A)

Cracked I Naphthenes Aromatics
Products

Isoheptanes

Their pseudo-homogeneous rate expressions have been generalized by

Guertin et al. [13], with the equilibrium constants KI, K2 , and K3

recalculated from the API tables [1] for self-consistency. For those

calculations and the following ones, species A was taken as toluene,

C as an equimolar mixture of propane and i-butane, N as

methylcyclohexane, and I as an equimolar mixture of 2- and

3-methylhexane.

The present theory requires local kinetic expressions, rather

than pseudo-homogeneous ones. To obtain these, we have adjusted the

rate constants to obtain mean rates <R.> consistent with those of1

Krane et al. at the conditions of their experiments. A particle

diameter of 1/16" and length of 3/32" were assigned to those

experiments after consultation with John Sinfelt; this gives an

effective sphere radius of 0.9 mm by the Wheeler-Aris rule [3, p. 162].

Activation energies of 15,000 K were assumed for the forward

reactions; these values are not critical since the temperature

corrections required are small.

The transport parameters for a similar catalyst have been

determined by Feng [9] by fitting eqn (1) to his mass flux

experiments. A one-point lumping of the pore size distribution gave

W = 0.C81479 and rI = 374 A, whereas a two-point lumping gave W =

0.11803, rI = 64 A, W2 = 0.032828, and r2 =845 A; in both cases a
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permeability B0 = 4.5 10-6 g cm sec -2 atn -I was obtained. A thermal

conductivity keff = 0.0005 cal cm
- I sec -I K- is given by Sehr [29]

for a similar catalyst; this value was used for the non-isothermal

cases. A catalyst density of 1 .22 g cm-3 was used, as for Feng's

experiments.

The transport coefficients )i and A were calculated at 769.24 K
ij

from eqns (1 .4-18,19) and (16.4-12,15,16) of Bird et al. [6]; for

other temperatures a correction (T/769.24)O *8 was applied.

Lennard-Jones parameters were obtained for hydrogen from [6], and

for each hydrocarbon from correlation (iii) of Tee et al. [34] with

critical properties and vapor pressures from the API tables [1].

Surface diffusion was neglected.

From these physical data and the productior rates <R i> rejorted

by Krane et al., we have obtained the follow ti loca: -!*e equations

for a temperature of 769.24 K (925 F):

.72 p.63 [ _PS -p2.95]

% = 0.567 p71 [ PS- PHPN1".77]

= 0.567 p 1 [ p, - p (2.95/1.77) ]P-3 l

(31)

= 7.8 1 [ 3 p /377700]
R4 N 8-"P 1 H A

0.06p -0.67

Y5= O~Op PS

j6 = 0.061 p-0 .6 7 P

With these local expressions, the computed mean production rates <Ri>
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closely approximate the values reported in [21] for the n-heptane and

methylcyclohexane conversion experiments.

The pseudo-homogeneous rate constants of Krane et al. [21, 13]

differ from our local values by the following factors: 0.52 for

reaction 1; 0.63 for reactions 2 and 3; 0.13 for reaction 4; 1 .47 for

reactions 5 and 6. These comparisons show that the intraparticle

gradients are important, even for this small particle size. Similar

conclusions were reached by Hettinger et al. [14] from their

experiments with several particle sizes.

Calculations are reported here for catalytic reforming in

spherical particles with the following boundary conditions at z = 1:

PS = PN = PA = 1 atm, pH = 15 atm, p, = pC = 0, T = 769.24 K. The

large naphthene partial pressure corresponds to a first-reactor inlet

condition; the fate of the naphthenes in that region is crucial to the

selectivity of the process. Calculations are given for spherical

particles with radii of 0.9 and 1 .6 mm; the latter size corresponds

approximately to a 1/8" x 1/8" pelleted catalyst.

The reference state was chosen here as E(z ) from a one-point

polynomial collocation solution; other choices of ER would give

comparable results for this mildly non-linear reaction model. Analysis

of the stoichiometry by the method of [31) gives m = 4 as the maximum

number of independent production rates.

Table 3 shows the values X and % for the 0.9 mm particle with a

one-point pore size distribution model. The complex eigenvalues arise

from the temperature dependence of the reaction rates; the eigenvalues

were all real in the isothermal case.

Table 4 shows the convergence of the boundary fluxes for two

species with increasing n; the efficiency of the hyperbolic functions

is evident, especially for hydrogen. The fluxes of both species are
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TABLE 3

Selection of Basis Functions for Catalytic Reforming

in a Nonisothermal Particle. L = 0.9 ma and n = 1
W

------------ ---------

Eigenvalues Real('X-) Selection
*k dk

k k,initial Order(

aftera 0 = 0

() -0.2 10-7  ()

(6) 0.3 10-7  (5)

(0) -0.00119 + 0.00443 1 ()

1 -0.00119 - 0.00143 1 0.0474 4, 8,

2 17.381 + 0.56871 1 4.1696 3, 7,

3 17.381 - 0.56871 i 4.1696 2, 6,

4 422.57 20.556 Is 59

---2.51-------------- -------- 0.- ---

M Since this problem has m = 4, the 4 largest values Re(V/)
are selected. The other eigenvalues are not used.

(M) These are not the indices j of eqn (14); the latter are
obtained by labeling the chosen a values in ascending order
as 1, ... . The grouping operations are then performed.

0 n
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TABLE 4

Convergence Test of Boundary Fluxes for Catalytic Reforming

in a Nonisothermal Particle. L = 0.9 m and n = 1
w

L mole cm-1 sec-1  106

Number of Hyperbolic functions Polynomial functions
Collocation

Points Hydrogen n-Heptane Hydrogen n-Heptane
flux flux flux flux

1 1.4274 -. 06692 .3709 -. 05133

2 1.4279 -. 03992 .8670 -. 04834

3 1.4343 -.04035 1.2421 -.04102

4 1.4350 -.04122 1.3945 -.03984

5 1.4309 -. 04299 1.4293 -. 04105

6 1.4297 -.04322 1.4322 -.04797

7 1.4286 -. 04337 1.14304 -. 04294

8 1.4279 -.0347 1.14290 -. 04329

9 1.4279 -. 04351 1.4282 -. 04344
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accurate within 1% for n > 6 with the hyperbolic functions, versus

n > 8 with polynomials. Since the number of operations required

to solve eqn (26) varies essentially as n3 , the hyperbolic functions

give practical accuracy in about half the computing time.

Table 5 shows the mean production rates computed with n = 7, for

several conditions and several versions of the transport equations.

The first two lines give results for a nonisothermal 0.9 mm particle

with n = 1 and 2 in eqn (1). The appreciable difference between these
w

two cases is caused by the wide distribution of pore sizes in the

catalyst. The next two lines are obtained for an isothermal particle

with n = I and 2. As expected, there are only moderate differences
w

between the non-isothermal and isothermal solutions because the net

heat of reaction is small. Line 5 represents a simplified model in

which all off-diagonal elements in the F(r) matrix are neglected, thus

giving each molar flux in the form N - D dc/dz The resulting
iz ieff 1

approximations for <R i> are good within 10 percent; larger deviations

may be expected for systems in which the gaseous phase is not so

diluted with a highly mobile component.

Line 6 gives rates calculated with a permeability twice the

measured value. These results agree closely with line 2; thus,

approximate values of B0 and p should normally suffice.

Lines 7 and 8 give the mean production rates for larger and

smaller particles: 1 .6 mm and 0 im. The rates, and their ratios,

vary strongly with particle size; the rate for n-heptane actually

changes sign. Thus, a pseudo-homogeneous kinetic model is not

appropriate, at least for these reaction conditions.

Tables 6 and 7 show the concentration and temperature profiles

for both particle sizes, calculated from the full model with n = 2.
W
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TABLE 5

Mean Production Rates for Catalytic Reforming in Spherical Particles,

Computed with n = 7

-- e e e e e e e e e e e e e e e e e e e e ee------ ----- ---- - -e ----- ee f

<Ri>, mole 871 se_-1' 106

Iso- Cracked
Specifications L, mm n-Heptane heptanes Naphthenes Hydrogen Toluene Products

Nonisothermal, n =1 0.9 -13.17 44.59 -191.5 433.7 156.9 6.91
w

Nonisothermal, n =2 0.9 -13.44 47.04 -202.7 458.2 165.8 6.98
w

Isothermal, n z1 0.9 -13.96 44.71 -193.5 440.6 159.2 7.16
w

Isothermal, n :2 0.9 -14.36 47.23 -205.0 466.2 168.6 7.26w

Non isothermal,
D model(*), n :2 0.9 -13.81 48.80 -213.1 480.9 173.1 7.20ieft W

Nonisothermal,
B doubled, n =2 0.9 -13.40 47.03 -202.6 453.6 165.8 6.980 U

Nonisothermal, n -2 1.6 -9.43 27.53 -115.5 264.6 95.0 5.30U

Small-particle limit 0.0 29.59 250.3 -1489. 3327. 1205. 8.49

- -- ----- - --- - - --- - --- - - --- - - --- ------ -- ee-ee e e e-ee ---- ee ee e e

(') The D model is obtained by neglecting the right-hand term of eqn (2b).
ie--
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TANZ 6

Profiles for Catalytic Reforming in a Spherical Particle of Radius 0.9 m

Computed ith n = 7 and n =2

Concentrations, mole cm- 3 * 106

IsO- Cracked Temp.
z n-Heptane heptanes Naphthenes Hydrogen Toluene Products K

1.0000 15.84 0. 15.84 237.6 15.84 0. 769.24

0.9904 15.50 0.69 13.00 238.2 17.88 0.07 768.80

0.9488 14.13 2.79 5.70 239.6 23.17 0.38 767.64

0.8718 11.99 4.88 1.47 240.5 26.35 0.89 766.92

0.7578 9.62 6.52 0.44 240.7 27.34 1.52 766.70

0.6074 7.56 7.69 0.33 240.8 27.67 2.17 766.63

0.4250 6.10 8.40 0.32 240.8 27.88 2.73 766.59

0.2188 5.28 8.72 0.32 240.8 28.01 3.11 766.56

~ 1
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TABI 7

Profiles for Catalytic Reforming in a Spherical Particle of Radius 1.6 m

Comwted ith n = 7 and = 2

Concentrations, mole cl- 3 * 106

Iso- Cracked Temp.
z n-Heptane heptanes Naphthenes Hydrogen Toluene Products K

1.0000 15.84 0. 15.84 237.6 15.84 0. 769.24

0.9913 15.25 1.C2 11.70 238.5 18.80 0.16 768.51

0.9540 13.00 3.74 3.41 240.3 24.83 0.80 767.01

0.8854 9.88 6.00 0.63 240.9 27.CS 1 .84 766.44

0.7831 6.93 7.48 0.32 240.9 27.60 3.13 766.33

0.6438 4.80 8.13 0.31 240.8 27.84 4.49 766.29

0.4641 3.55 8.15 0.30 240.7 27.97 5.73 766.28

0.2451 2.96 7.92 0.30 240.6 28.00 6.63 766.29
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The naphthene and n-heptane concentrations decrease strongly to'ard

the center of the particle, whereas the toluene, isoheptane and

cracked product concentrations increase. The total intraparticle

temperature drop is about 3 degrees Kelvin for both particle sizes.

CCKCI;SIO

A generalized model and numerical procedure have been presented

here for steady-state simulation of porous catalyst particles. The

examples show the ability of the method to deal with fast or slow

kinetics, multicanponent diffusion and multiple reactions.

The new collocation method, with basis functions given by eqns

(14), allows efficient solutions both for stiff and non-stiff

differential equations. For non-stiff equations (small eigenvalues)

the method reduces to a global polynmial collocation scheme. For

stiff equations a similar reduction eventually occurs at large values

of n, through the grouping rules described above eqns (14).

The selection of the yalues still requires some Judgment.

Research on this aspect of the method is continuing.

Example 3, as well as the data in [14], show that intraparticle

gradients are important in catalytic reforming operations.

Use of two pore sizes in eqn (1) is recomended for wide pore

size distributions, such as ccmmonly occur in reforming catalysts.

This is more accurate than the assumption of a single pore size, and

takes very little more computing time.
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NOTATION

A weights for dimensionless gradient operator, eqn (20)

a geometric parameter, 0 for slabs and 2 for spheres

a adjustable coefficients, eqn (12), consistent units

B permeability coefficient, g cm sec -2 at; -

0
b adjustable coefficients, eqn (17)

c column vector with elements ci

c total molar concentration in pore space, mole cm7
-

molar concentration of species i in pore space, mole cm 3

i

c = 1i/c, , dimensionless concentration of reactant species

D matrix with elements Dij

D row i of D

D transport coefficient calculated from eqns (A.2)-(A 5),ij

consistent units

.2i(c,T) binary diffusivity of pair ij, cm
2 sec-1

ij
Cr) = -52RT79!- Knudsen diffusivity of gas i in a pore

of radius r, cm2 sec- 1

D surface diffusion coefficient matrix, 2 sec 1
~s

flk adjustable coefficients, eqn (13), consistent units

E weights for dimensionless divergence operator, eqn (21)
kj

P(r) matrix with elements defined by eqn (2), sec cm 2

R i  partial enthalpy of species i, cal mole -I

AH enthalpy of reaction, cal mole -1

kef f  effective thermal conductivity of porous medium, cal cm- 1 sec- 1 K- 1

L half-thickness or radius of particle, cm

M mass number of species i, g mole - I
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m maximum number of independent production rates Ri permitted by

stoichiametry and local constraints; see discussion under eqn (10)

N column vector with elements N " ' Nc+1

N(m) column vector with elements N , ... N

N smoothed flux of species i, mole cm-2 sec-1, for i =, ... n-i c

smoothed total energy flux, cal cm-2 sec- , for i = E

N z-component of N
iz -i

*T/(a+l ), dimensionless reactant flux at z = 1

n number of interior collocation points

n number of gaseous species
c

n nmber of pore sizes in eqn (1)"
w

p total pressure, abm

p column vector with elements i

p i partial pressure of species i in pore space, atm

Q leading factor in residual functions, eqn (16)
n

specific rate of reaction J, mole g-1 sec-1

R column vector with elements Ri

Re p , rate of production of species i,

J

mole cm- 3 sec -I , for i = 1, ... nc; Ri = 0 for i=E

<R > average of Ri over the particle volume

R' matrix with elements 3R /J, consistent units
ii

R gas constant, consistent units

r pore radius, A

T temperature, K

Wk  porosity-tortuosity coefficient in eqn (1), dimensionless

X, f c i/c, mole fraction of species i in pore space

.I ,, , ,R,:: .
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z dimensionless coordinate relative to L, measured from center

of particle

Greek letters

a dimensionless parameter in basis function f , eqn (14)

8 dimensionless heat of reaction in Ref. [37]

Y dimensionless activation eneray in Ref. [37]

6 Kronecker symbol, unity when i = j and zero otherwise
ij
ri= <R >/RI,0, effectiveness factor for single reaction

1 10
'dimensionless eigenvalues of eqn (9)

-1 -1
1viscosity of gas mixture, g cm sec

V stoichiometric coefficient of species i in reaction j
ji

column vector with elements i
i = c i for i = 1, ... nc; Ei = T for i = E

p particle density, g cm
-3

t Thiele modulus

fj basis function, eqn (14)

Subscripts

E energ; element n +1 in column vectors N and E.C -

H molecular hydrogen

R reference state for 'Inearization

s auxiliary variables in Paterson-Cresswell method

z z component

0 outer surface

Superscripts

per unit mass of catalyst

~ approximation in terms of basis functions; see eqns (12) and (13)
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APPENDIX A. THE MATRIX D

Insertion of the gas-law expressions p = cRT and p = jT into

eqn (1) (here 1 is a row vector with all elements unity) gives
nw
Aw

Wk + iT

k=1

- (BO/U) [c IT] c - (Boclj) c 7T (A.1)

This gives the following elements of D:

For i E and j $ E,

Dii= - = ~k [~r- 1 + (BRTU c, + D (A.2

D ijW [F(r k 1 ij ( u)c A.2)
1Vcj k-sij

For i E,

n.
- rk-2J-+ ( + )ci (A.3)

DiE Wk [Fr)-Ti/
aVT Zk

The remaining elements of D are obtained from eqns (3) and (A.2):

For j # E,

D = D H (A.4)
Ej~ 37j Ei= i

4W
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Finally,

n

D ~ Zi~= D H + (A.5)
E =1 i.E i eff

The matrix D(FR) of eqn (9) is calculated from these expressions.
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APPENDIX B. PROPERTIES OF THE GRID POINTS AND BASIS FUNCTIONS

Let a0, ... a be distinct real numbers, and let PO(z), ... P (z)
s 0s

be polynomials of degrees in, ... ms . Then the function Z Pi(z) exp(azZ)-i

has no more than - + _ (mi + 1) zeros on the real axis, unless it

vanishes identically; see Polya and Szego [28], p. 48, Theorem 75. This

result can be used to bound the number of zeros of any function

j--o

constructed from the first M + I members of the set in eqns (14).

For the slab, eqn (B.1) can be written in the form

F (z) - P (-z) +P (1+z)

M 0 0

+T Pi(1 -z) exp[-ai(1 -z)]

D>O

+ P 0i(+z) ex(- a,(1 +z)] (B.2)

i>O

by use of eqns (14). Here the a are the distinct members of the set

O, .M The sum T(mi + I) is (m0 + 1) + 2(m + 1) + ... =
I WI

2MI + 1; hence, by the above theorem of Polya and Szego, the number of

zeros of F (z) on the real axis does not exceed 2M1. Since P (z) is even,
*M M

the number of zeros on the real interval (O,..) then does not exceed M.
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For the sphere, eqns (B.1) and (11) give

z Fm(z) = z Po(1-z) - z P0(1+z)

+ T P,(i-z) exp[-a (1-z)]
i>O

--- P,(l+z) exp[-cti(+z)] (B.3)

D)O

The stum (m. + 1) is now 2M +2; this allows, at most, 24 + I real

zeros for z FM(z), and one less for FM(z). Again, FM(z) is even and

has no more than M zeros on the real interval (0,-).
Now let v be the number of sign changes of Qn(z) on the real

interval (0,1) in a slab or sphere. The result just shown ensures that

v < n; it also ensures that there exists an expansion F (z) given by

(B.1) whose sign agrees on (0,1) with that of Qn(z). Then the integral

IoQ n(z) F (z) za'Idz is nonzero, since its integrand is positive

except at the zeros of Qn (z). This result is compatible with eqns (19)

and (B.1) if and only if v > n. But v < n , as noted above. Hence,

v = n; that is, Qn (z) has exactly n sign changes on (0,1). Each sign

change is a zero, since Qn(z) is continuous.

The determinant

*o(Z,) ... o

*(z) . .. *(z )
DM+ I = 1 1 1 N+ (B.4)

. I  . . . . I

f 1(z1 ) n e b z ,n)

is nonzero as long as the real numbers zit .... m~ are distinct and
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positive, since no linear cobination of f 0(z), .. W~z can vanish

at more than M distinct points on (0,a-). Therefore, the matrix

[(z )]of eqn (22) (for which M = n) is non-singular, and the weight

matrix [Aki] is uniquely defined. The uniqueness of [Ekj~] in eqn (23)

can be proved similarly, using the basis set ldf (z)/dzj.
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